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§I. Preface. Modal logics arise throughout computer science. It is worthwhile to find the

best means of exposition of theory and applications for mathematics and computer science
students. The classical modal logic texts are neither oriented toward computer science nor

mathematics. The computational content of proof procedures and how the notions apply in

computer science and Al applications has to be brought out. Here we start an exposition
without proofs of propositional modal logic using a tableaux method easy to remember for

hand computation and suitable for automated reasoning. The exposition is analogous to the

exposition in the author's lectures on intuitionistic logic (Nerode [1990]), a]so directed at

computer science applications. Here one application exposited at length, also without proofs,
is the autoepistemic logic of Moore. rThe outline of §9 was supplied by W. Maek."bBut any

defects of exposition are solely due to present author. We outline classical constant domain

modal predicate logic briefly. We conclude with dynamic logic. We give a brief introduction

to a new intuitionistic dynamic logic due to D. Wijesekera, which is suitable for dealing with

concurrency. () j

§2. Propositional modal logic. Propositional modal logic is based on connectives which

construct new propositions from old. We treat propositional logic first. The modal
propositional connectives are

"and" A
11oril V

"implies" -,

"not"

"box" a
"diamond" o

The primitive symbols will be:
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An infinite list of propositional constants.

The list of logical connectives A, V, '*, -,0.

parentheses (,) and the comma.

The inductive definition of (modal) proposition is:

I) Propositional constants are propositions,

2) If a, #3are propositions, then (a A fl), (cr /3), (a 1f), (-'a) are propositions.

3) If a is a proposition, then (oa) is a proposition.

4) If a is a proposition, then (00) is a proposition.

Sometimes we omit parentheses, but just as often we put extra ones in for legibility in

complex expressions. We are indiscriminate in using both upper case Roman letters and lower

case Greek letters for propositions.

Propositions constructed by rules 1), 2) alone are called classical propositions and constitute

the language L. Propositions constructed using rules 1), 2), 3) are called modal propositions

and constitute the language Lo. Propositions constructed using 1), 2), 3), 4) are also called

modal propositions and constitute the language L0 10 .

The classical propositions of L are intended as truth functional modes of statement

composition, that is the truth or falsity of a compound statement is determined by the truth

or falsity of the parts. This is the import of the truth tables of propositions. Conversely, any

truth table is the truth table of a proposition built from A, V, -. Classical propositional logic

was defined to deal with exactly all truth functional connectives.

As for the modal connectives,

"oP" is read "box P", or sometimes "necessarily P",
"oP" is read "diamond P", or sometimes "possibly P".

We prefer the readings "box" and "diamond", simply because the interpretations of the

connectives o and o symbols in applications are often quite different from those associated

with "necessary" and "possible". For example, "I know, that", "I believe that", "John knows

that", "John believes that" are often axiomatized using box with appropriate axioms. A

further reason for neutral terminology is that the question as to what are the properties of

necessity and possibility has been debated since the golden age of Greece.
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Bmu.. Modal propositional connectives, unlike the classical connectives, never entered into
the foundations of classical mathematics. These foundations rest only on the classical "truth
functional" propositional connectives. The new connectives of modal logic are not intended to
be truth-functional. "It is necessary that P " should not depend solely for its truth or
falsity on the truth or falsity of P, otherwise it is merely P or -'P.

3. Frames. C. I. Lewis (1918] introduced modal logic as a deductive subject and gave a notion
of theorem based on axioms and rules of inference. Kanger [1957] and Kripke [1959, 1963]
gave a semantics based on the notions of frame and model.

First let us review truth valuations of classical logic L. An L-assignment is a mapping A
with domain the set of propositional constants to {T, Fl. Let A be the set of all
propositional constants mapped into T by A. Each assignment A has a unique extension
to a classical L-valuation v of L, such that

0) v(P) = A(P) for all propositional constants P.
1) v(A A B) =T iff v(A) T and v(B) = T.
2) v(A V B) =T iff v(A) T or v(B) T.
3) v(A B) T iff v(A) T or v(B) = T.

4) v(-A) =T iff v(A) # T.
Or equivalently,

0) For propositional constants P, P is true iff P f A.
1) A A B is true iff A is true and B is true. MSaEC,
2) A V B is trueiff A is true or B is true.

3) A - B is true iff A is not true or B is true.

4) -'A is true iff A is not true.

Frame semantics. For modal propositional logic Kripke introduced the notion of a frame

(J, R) consisting of a non-empty set Y -f "possible worlds" and a binary relation 0
R C 3rx Jr Then wRx is read "x is accessible from w". A model M is a triple (., R, v),
with (J, R) a frame and v(w) a "valuation function" with domain the set of "possible
worlds" Yand range contained in the set of L-valuations, which assigns to each w in Y an
L-valuation v(w). So the notation for the truth value of the valuation v(w) assigned to
world w at proposition A is v(w)(A). Here is a definition of "V is true at w in M".
Reference to M is omitted when understood. Av8U .Avail1 aad/or

Dist jspeoa"
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0) An atomic proposition A is true at w iff v(w)(A) = T.
1) A A B is true at w iff A is true at w and B is true at w.
2) AvB is true at w iff A is true at w or B is true at w.
3) A- B is true at w iff A is not true at w or B is true at w.
4) -A is true at w iff A is not true at w.
5) DA is true at w iff for every x accessible from w, A is true at x.
6) *A is true at w iff for some x accessible from w, A is true at x.

Fix M. We indiscriminately write "A is true at w" as "w 1 A, or as "w forces a". At
times this avoids incorrect connotations of classical truth, and is a notation borrowed from set

theory.

In the forcing notation, the inductive definition of 1- is: for all w in ,

0) For an atomic proposition A, wI.A iff v(w)(A) = T
I) w1-AAB iff w-A and wtB.
2) wlAVB iff wf-A or w-B.

3) w.A -B iff not(w- 1A)or w -B.
4) w -A iff not (w -A).
5) wloA iffforall x in Ysuchthat wRx, xI-A.
6) wI-oA iffforsome x in YsuchthatwRx, xi-A.

Remark. Box "o" and diamond "o" are written as "propositional" connectives. But in
model (, R, v) the "a" in w I- nA is a universal quantifier over possible worlds accessible
from A (if any), while the "o" in wI-oA is an existential quantifier over worlds accessible
from w. So to construct models for modal propositional calculus, the appropriate method

comes from classical predicate logic, not from classical propositional logic.

We assume as given an infinite sequence of constants to name worlds, "world constants". In

the tableaux below these will be used ambiguously as names for worlds w and names for
classical valuations w at worlds. That is, in the models associated with tableaux branches.
Y " will be a set of world constants, and the accessibility relation R will be a relation between

world constants. This means that for the models constructed by tableaux, the valuation map
v will be such that v(w) = w. There we do not distinguish between names of worlds and

names of valuations in the tableaux.

f_________
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The tableaux rules are chosen to reflect exactly the definition of forcing in a model.

4. Propositional tableaux. A tableaux is u finite labelled tree, with apex at the top. Each
node is labelled by a "signed formula" TvI-A or Fyi-A, with A a formula, v a world
constant. These are read respectively "at world v, A is true", or "at world v, A is false".
In addition, at the base of some branches is an ", and these are called closed branches, the
rest open. Tableaux are developed (extended to larger tableaux) by the rules below.

Here is the dynamic idea behind constructing a tableaux proof of A. To verify that A is
valid in all models, we suppose not, and search for a counterexample by developing a tableaux
with apex FwI-A, with w a world constant not occurring in A. If we develop such a

tableaux according to the tableaux rules, all possible ways to falsify wi-A are taken into
account. If an immediate contradiction occurs on every branch at some point of the tableaux

construction, all ways of falsifying A have been exhausted. A is valid in all models. The
resulting tableaux with contradictions on every branch is a proof of A. A closed branch is
one with a contradiction " -" at the base. Open branches are those that are not closed. We

develop the tableaux by usin entries on Q en branches. An entry is used by placing an

appropriate atomic tableaux, omitting its apex, at the base of some (or every) open branch

through that entry. A branch is declared cled as soon as for some branch and some

proposition B and some world constant w, that branch has entries of the form Twl-B,
FwI- B. We place a cross "x" at the base of each branch so closed. A tableaux proof is a

tableaux with all branches closed.

The tableaux proof system is based on the atomic tableaux for classical and modal connectives

below, A, V, -, -, o, o. It is the equivalent of the system K traditionally studied in modal

logic. See Fitting [1983] for closely related systems of prefixed tableaux, from which these

tableaux stem. We also will extend this system with additional tableaux development rules to

deal with validity in special classes of frames.

Atom-dc tableaux. The classical connectives.

and

Twl- A FwI A k
T ' ',- '%,,

Tw Fw-i- Fwl- ,

Tw1
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Or

Tw-ov 

Fw[-"/ "FW~IkTwl-,o ' TwVO-F¢

implies
TwV-,,,/ Fwl-V-W

FwrV TwFOa TwV-p

FwI-O

not

TwV--V FwI-cp
Fwvv T wI-v

Examp-e. Here is a tableaux proof of -'B A (A V B) -. A.

1 FwI-B A (A v B) - A

2 Twi--B A (A V B) by 1

3 Fw-A by I

4 TwI-(-B) by 2

5 Tw(AVB) by 2

6 Tw-A TwI-B by 5

7 X FwI-B by 3, 6 by 4

8 x .by6, 7

The number annotations on the left and the reason annotations on the right are not part of

the formal tableaux proof, but are useful for reading a finished proof. Since "W-" plays no

role in tableaux for propositions in the classical propositional calculus L, it can be omitted,

getting the tableaux below.

F-B A (A v B)-. A

T-'B A (A v B)
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FA

T-B

T(AVB)

TA TBI i
K FBI

This is a classical tableaux in the sense of Smullyan [1968).

Examo]e. (Peirce's Law) Here is a classical tableaux proof of another classical proposition.

1 F((A-.BJ-A)"A)

2 FA by I

3 T((A-B)-A) by I
/

4 F(A-.B) TA by 3

5 FB X by 4 by 2, 4

6 TA by 4

7 x by2,6

ExaMple. Here is another classical tableaux.

I T((AA(-,A))V(BV(CAD))))

2 T(AA',A) T(BV(CAD)) -by II / \

3 TA TB T(CAD) by 2
i /

4 T-,A TC by 3

i F
5 FA TD by 4 by 3

|i .,
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This is not a proof. Here we get a contradiction on the left branch. Each of the other

branches exhibiting valuations making the topmost signed statement true. That is, any

valuation making B true makes the topmost signed statement true, any valuation making
C, D both true makes the topmost signed statement true. This exhibits the fact that
counterexamples can be read off tableaux.

Atomic tableaux. The modal connectives.
BOx.

TwI- o Fwt-oW

TvF- Fk

Twl'v
provided TwRv occurs for a new v not yet
on the branch already occur ring on the branch

Diamond. Twi- oP Fw#-oP

Tvi-P FvFP

TwLK
for a new v not yet provided TwRv occurs
occurring on the branch on the branchalready

Explanation. Recall the definition of forcing at a world in clauses 5), 6) abowe. For any

tableaux entry Twt-o on an open branch, if v is a valuation constant already occurring in

a signed formula on that branch, we wish to be able to adjoin Tvt-O to the end of that

branch. For any tableaux entry FwI-oV on an open branch, and any valuation constant v

not occurring on that branch, we wish to be able to adjoin to the end of that branch TwRv
followed by Fvt- ,. These are the last of the rules of proof for modal propositional logic L., .

&mark. In these notes, diamond o will not be mentioned again. We concentrate on L0.

The definition of semantic validity must be expressed with care. A proposition P is valid in

a model (, R, v) if P is forced by every w in .A proposition P is valid in a frame

(, R) if for every possible valuation function v for that frame, P is valid in the model (3,
R, v). A proposition is vaWid if valid in every frame. So P is valid if for every frame 3,



every valuation v, every world w of , w forces P.

It is useful to have the notion of a deduction of proposition B from premises A1, An.

The notion of deduction is supposed to be a syntactical equivalent of the semantical assertion
that for all frames (, R) for which A1, ... An are valid in (, R). B is also valid for (5,

R). The hypothesis is that for all i, all w in Y, w I-A. This is not reflected in the tableaux

proof rules above. We need an additonal

Atomic tableaux for deductions.
For any premise Ai , any world constant v,

the tableaux below may be appended to any open branch

Tv F- A.

Then a deduction of conclusion B from premises A1 ... , An is a tableaux with all branch'

closed in which
1) the apex is Fwl-B
2) The atomic tableaux for proofs are allowed.
3) Application of the tableaux deduction rule for premises A1,..., An is allowed- i.e., th

atomic tableaux for deduction indicated can be appended to the base of any open brar

will for any premise Ai and any valuation constant v.

Theorem. (Correctness). Every proposition with a tableaux proof (by rules 1-6) is valid. If
proposition B has a tableaux deduction from A1, ..., An' then B is valid in any frame in

which A,.., An are valid.

Theorem. (Completeness) Every valid proposition has a tableaux proof. If B is valid in every
frame in which A1, ., An are valid, then there is a tableaux deduction of B from A1,

An

The completeness and correctness proofs mimic the classical case. They are straightforward
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by a "complete systematic tableaux procedure" like that of Smullyan for classical tableaux
and of Fitting 11983 for prefixed tableaux. They will be supplied in a more complete version

of these notes.

Examle. All classical tautologies have tableaux proofs. For simply substitute "Twi-" for

"TV' , "Fwl-p" for "Fp" throughout the classical tableaux proof of the tautology.

Examle. Here is a tableaux proof of o(A -. B) -. (oA - oB). It is the axiom used to prove
that [P : o is a theorem] is closed under modus ponens in Hilbert-style systems of
propositional modal logic based on axioms and modus ponens as the sole rule of inference.

1 Fwl-o(A -. B) - (oA- oB)

2 Tw-no(A -. B) by I

3 FwFoA- oB by 1

4 Twl-oA by 3

5 Fw-oB by 3

6 Twv new v by 5

7 FvI-B by 5

8 Tv-A by 4, 6

9 TvI-A-.B by 2, 6

10 FvFA "vI-B by 9

11 by8, 7

Exm.pl (Modus Ponens) From premises A, A -. B, deduce B.

I FwI-B

2 Tw-A - B Premise

3 Tw-A Premise

4 FIA Twl-B By 2

X X By 1, by 3

The semantical equivalent is that if A and A -. B are valid in a frame, then so is B.
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1. From premise A, deduce nA. This is called the rule of necessitation. (Line 4 of

the deduction below uses the deduction atomic tableaux.)

I FwFoA

2 Twlv by I

3 FvkA by I

4 Tv1A premise
9

Exam e. In contrast, A - ciA is not valid.

I FwVA-oA

2 Twl- by I

3 FwIoA by 1

4 TwRv by3

5 Fv'4  by 3

This produces a frame Y9
= {w, v}, R = {(w, v)j, and a valuation v in which A is true at

w but not at v.

A
w - V

In this frame, w does not force A -. oA, so A - oA is not valid in all frames. But A - tA

is valid in those m2did (, R, v) such that for all w, x e 5r, if wRx and under the

valuation, if A is true at w, then A is true at x. So one has to be very careful in

formulating any sort of "deduction theorem" saying that under certain circumstances, if B

can be deduced from A, then A -. B is provable. One would have to decode the forcing

meaning, whicn unwinds the modal operators as quantifiers, and loo at their scopes.

Compae

- "From A as premise, deduce conclusion B." This says the following. Suppose that in a

frame (Y R), all possible valuations v that can be assigned to worlds in Y give models (.

P, v) such that for all w in F, w forces A, Then conclude that for all possible valuations

v of that frame (3, R), in the model (3 R, v), every world w in Y" forces B.

- "A -, B is a theorem." This says the following. In any model (. R, v), for any w in 51,
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if w forces A, then w forces B.

The quantifier structure of the two statements is quite different.

5. Some modal axioms.

Example. nA -, A is not valid. It is traditionally called T. If o is interpreted a "I know",

then T says "knowledge is truth", so it is called the "knowledge axiom. If o is interpreted

as "I believe", then T says "What I believe is true". One can have false beliefs.

1 Fwl-aA -. A

2 TwF oA by 1

3 Fwl-l by I

There is no contradiction. Reading off this tableaux the worlds and the forced atomic

statements at those worlds, a one world frame (J R). Y= {w) with empty accessibility

relation R and A false at w makes oA - A false. A reflexive frame is one in which wRw

for every world w. Looking at the tableaux line 2, we would get TwI-A, contradicting line 3.

So oA - A is valid in all reflexive frames. Conversely, any proposition valid in all reflexive

frames can be deduced from uA -. A.

Reflexive tableaux develonment rule.
If w is any world occurring in an entry, at the base of any open branch through that entry

we may append the tableaux

TwRw

A proposition is valid in all reflexive frames if and only if provable by the standard modal

tableaux plus the reflexive tableaux development rule.

Example. oA -' ooA is not valid. Traditionally, this proposition is called "4". In newer

papers, this is called the "positive introspection axiom", "What I believe, I believe I believe".
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1 FwNoA -. ooA

2 Twl-oA by I

3 Fwl ioaA bylI

4 TwLv newvby3

5 FvIaoA by 3

6 Tv1~u newu by 5

7 FuI-A by5

8 TvPA by 2,4

There is no contradiction. But reading off the true atomic stAtements from the tableaux, we
get a three world frame Y= {w, v, u), with wRy, vRu, and in the model with A true at v,
but A not true at w or u. This is a counterexample to the validity of oA -, oDA, which is
not true at w.

A
W--. V -- U

The labelled graph above has branches representing all accessibility relations and nodes
representing all worlds. Labels of nodes are atomic propositions true at that world.

A transitive frame (3, R) is one such that for all w, v, u, if wRy and vRu, then wRu.
Then from the tableaux we get TwRv, TvRu, so we get TwRu. Then we could apply line 2

and get TuI-A, contradicting line 7. So oA -, ooA is valid in transitive frames. Conversely,
any proposition valid in all transitive frames is deducible from oA -o nA. If we wish to deal
only with transitive accessibility relations, we can add the following rule of tableaux
development directly to those already given.

Transitivity tableaux develogment rule.
If TwRu and TuRv occur on a branch, we may append to all (some) open branches through
that pair, the tableaux

TwLv

iI
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Then a proposition is valid in all transitive frames if and only if it has a tableaux proof using
the standard modal tableaux rules plus the transitive tableaux development rule.

EampJ. -uap - a-uV is not valid. In older papers this is often abbreviated E for the
Euclidean axiom, or 5. In newer papers, this is called the "negative introspection axiom".
"What I don't believe, I believe I don't believe"

I Fwt--o~o - oa

2 Tw,-- Op by I

3 FwIo'oDv by 1

4 Fwio by 2

5 TwLv by 4

6 FvI- newv by4

7 TwL/u newu by3

8 Fu-op by 3

9 TuI-o by 8

If we read off the true atomic sentences, they are wRy, wRu. With V declared false in all

three valuations, we get a model

W /vu

in which w does not force -ow - o-,op. An Euclidean frame is one such that for all w, v, u

in , wRu and wRy imply uRv. Looking at the tableaux, we had TwRu, TwRv. With

the Euclidean property, we get also TuRv, by line 9 this gives T*-q, contradicting line 6.
So -,ow -, o-'o is valid in all Euclidean frames. Conversely, any proposition true in all

Euclidean frames is deducible from -,of - o-.oap. For a Euclidean R , for any world w in 5.
the restriction of R to 1v c Y: w R v] is an equivalence relation, but this set does not

necessarily contain w itself.

Euclidean tableaux development rule.

If a branch contains entries TwRu and TwRv, then we may append to every open branch

through these two entries the tableaux
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TuRv

Then a proposition is true in all Euclidean frames if and only if it has a tableaux proof using
the standard modal tableaux plus the Euclidean Tableaux development rule.

Examp]e. oP - -o-P is not valid. In the older literature, this is axiom D. In newer papers.
this is called the serial axiom. "What I believe, I don't believe the negation of"

Fw-oP -a-P

2 Twl-oP by 1

3 FwV-o -P by I

4 Twli-o-P by 3

There is no contradiction. The model with a single world w and empty accessibility R and

P false at w will do to falsify oP -. ",o-'P. A serial frame is one such that for every world
w, there is a world v such that wRv. In this case from Tw I-oP, Tw I- o-P, we get Tv I-P.
Tv I- -P, a contradiction, so oP - -o-P is valid in serial frames. In fact, any proposition
valid in all serial frames is deducible from oP - -oP.

Serial tableaux deduction rule.
For any world constant v occurring in an entry on an open branch, and any valuation
constant u not on that branch, we may append to that open branch the tableaux below.

Tvlu

Thus a proposition is valid in every serial frame if and only if it has a tabeaux proof using the
standard modal tableaux plus the serial tableaux deduction rule.

Hilbert systems for modal logic. A standard set of axioms and rules of inference for a Hilber:
style modal logic called K defines the theorems (of K) as the smallest set of propositions
such the following hold.

1. All classical tautologies with modal propositions substituted for variable are theoremns
(These tautologies are the "axioms".)
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2. All propositions o(A -. B) - (oA oB) ae theorems.

3. If A, A - B are theorems, then B is a theorem.
4. If A is a theorem, then oA is a theorem.

The notion of deductive closure of a set of premises S would replace "are theorems" by "are

consequences of S " in 1, 2, 3, 4, and add
5) Premises in S are consequences of S.

We have already shown that each axom and rule of inference holds for tableaux provability

using the standard modal tableaux. Propositions proven by the tableaux method are valid in
all frames. Any proof of completeness for the system based on 1)-4) shows that tableaux
provability coincides with provability in this system.
Here is a list of commonly occurring systems.

- K is the proof system using the classical and modal atomic tableaux.
This tends to be a substructure of modal systems used for computer science.
- T is K plus the schema oA -, A as premises for deductions. T tends to be regarded as the

logic of knowledge (true beliefs).

* A proposition is provable in T iff valid in all reflexive frames iff provable by the tableaux of
K plus the reflexive tableaux development rule.

- S4 is T plus the additional schema uA -. A and cA -, ocA added as premises for

deductions.

* A proposition is provable in S4 iff valid in all reflexive, transitive frames iff provable by the

tableaux of K plus the reflexive and transitive tableaux development rules.

- S5 is S4 plus the additional schema -,oA - o-cOA added as premises for deductions. A
relation R on S is transitive, Euclidean and reflexive iff R is an equivalence relation.

* A proposition is provable in S5 iff valid in all frames with an equivalence relation on Y as
accesibility iff provable by the tableaux rules of K plus the reflexive, transitive, and Euclidean
tableaux development rules.

There is more to say for S5.
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Lem . Suppose (., R, v) is a model and w c 3. Define a model (;r, R', v') by setting
= [w' f .: wRw'], R' R n ;r x f , v' = v restricted to Y. Then w forces p in

(. R, v) iff w forces in (JF, R', v').
The proof of the lemma is by induction on the definition of forcing.

According to this lemma, V is forced by all v in all models Y with R an equivalence
relation on 3 iff forced by all v in all models with R an equivalence relation on Y which
has a single equivalence class, that is R = ,x . A complete frame is one where the
accessibility on Y is R = ,x Y

The system S5 was used by Moore [1985] for autoepistemic logic (see below). The system S5
is suitable for reasoning about knowledge in distributed systems, provided that there are
many S5 modal connectives 1A, one for each agent or machine A. This takes one beyond

complete frames, the lemma no longer works for multiple agents, one is stuck with many
equivalence relations, one for each agent, see Halpern Moses (1984, 198?], and also Lehmann

[1984].

Complete tableaux development rule.
If world constants u, v occur in entries, then we may append to the base of any open branch

through those entries the tableaux below.

Tulv

9 A proposition is provable in K5 iff valid in all complete frames iff provable by the tableaux

of K plus the complete tableaux development rule.

K45 is K plus the additional schema -cA -, --oA, nA -, oaA.

* A proposition is provable in K45 iff t-ue in all transitive Euclidean frames iff provable by
the tableaux of K plus the transitive and Euclidean development rules.

K45 is a candidate (Halpern and Moses [19861, Moore 11988]) for a logic of belief for a
"logically omniscient completely introspective rational agent", see below.

6. Non-monotonic reasoning. An important computer science class of modal logics arise in



artificial intelligence in the area called "non-monotonic reasoning". In monotonic reasoning,

a consequence drawn by a deduction from a set of axioms is also drawn by the same deduction
from any larger set of axioms. That is, the consequence and the deduction are never
withdrawn later however the set of axioms is enlarged. Monotonic reasoning is the only

reasoning in classical mathematics and in constructive mathematics as well. The axioms upon

which mathematics is based have been extended from those for Euclidean geometry in
Euclid's time (300 B. C.) to those for calculus in the time of Newton and Leibnitz (1680's) to
those for analysis in the time of Weierstrass (1850's), to those for set theory in the time of
Cantor (1880's). Gaps in proofs may have to be filled, but complete proofs are never
withdrawn. This is the monotone nature of mathematics, in which mathematicians never

disagree as to what is a proof and never reject the proofs of their predecessors, but build on
their results instead. This characteristic may, in fact, be unique to mathematics if one looks

at the history of all other disciplines, scientific or scholarly.

Think of each logic as having propositions. These propositions are certain strings from a fixed

alphabet. The logic also has rules of inference. What is a monotone rule of inference? By

instantiating the rules of inference, each monotonic rule of inference can be cast in the form

"From a1 , ..., an, infer -",

where a1 , . £n are propositions (premises), -t is a proposition (conclusion).

The rules of inference with no premises we think of as the "logical axioms". In a logic with
monotone rules of inference, if A is a set of propositions, then a set D of propositions is

called a deductively closed theory containins A if

"For each rule of inference, if a,, ..., an are in D, then 7 is in D."

In a logic with monotone rules of inference, for every set A of propositions there is a smallest
deductively closed theory containing A. This property is lost in the non-monotonic logics

below.

For non-monotonic logics we allow a more general form of rule of inference. We label

premises purely formally as "positive" or "negative". Each non-monotonic rule of inference
can be cast in the form
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" I a n are positive premises and 81,,.. .. Ok are negative premises, infer 7",

where a,, ..., an, n1' "" -,k' y are propositions.

So each monotonic rule can be recast as a non-monotonic rule by labelling its premises
positive and having an empty set of negative premises.

For a system based on non-monotonic rules of inference, a set D of propositions containing
set A is called a deductively closed set containing A if for all rules of inference,
if the positive premises a1 ... , an are in D and negative premises O ... k are not in D

then 7 is in D.

In non-monotonic reasoning a consequence drawn by a deduction from a set of axioms may
not be a consequence of a larger set of axioms, due to radically different deductively closed
sets containing the changed axioms in the non-monotonic case.

7. Informal Belief. Commonsense reasoning is often non-monotonic. I, a rational
introspective agent, have beliefs in my current complete set of beliefs B based on incomplete
information. Later I have to change to another belief set B' in which we may no longer have
some of the previous beliefs in B. We assume my belief set is closed under classical logical
consequence, that is, I believe the logical consequences of what I believe (principle of logical
omniscience). We assume that my belief set contains all of my beliefs. We suppose that the
facts about the external world (objective facts) and rules I know for sure (our knowledge base)
are in all my belief sets.

Example. In my current belief set B might be the propositions

R: "If x is a bird, and I do not believe that x cannot fly, then x can fly"
F: "Tweety is a bird."

Suppose

"Tweety cannot fly."

is = derivable from my belief set B. My beliefs are assumed closed under classical

deduction so we conclude that
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"I do not believe that Tweety cannot fly."

is in B. So applying rule R of B, we deduce that "Tweety can fly" and thus also we deduce

that

"I believe that Tweety can fly."

But B is closed under classical deduction, so this proposition is in B. I now visit New

Zealand and see a Kiwi, and realize that Tweety is a Kiwi, and conclude

N: "Tweety cannot fly"

In my new belief set B' I retain rule R and fact F and put new fact N into B'.

Since

"Tweety can not fly"

is in B', and is therfore a belief,

"I believe that Tweety can not fly"

is in B', and the hypothesis of rule R is not satisfied for B', and we cannot conclude, using

rule R, that "Tweety can fly" is in B'. We have withdrawn a conclusion of B. This is the
non-monotonicity of the reasoning. If indeed

"Tweety can fly"

is not derivable from B', since B' consists of all beliefs, we can conclude that

"I don't believe that Tweety can fly"

is in B' as well.

8. Autoepistemic logic. The complete set B of all beliefs of an agent is the subject of
Moore's autoepistemic logic [1984]. His is an account of how an agent reasons about the
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agent's Mw beliefs. This is the origin of the use of "autoepistemic", the notion of self
knowledge. Let L, be the set of all modal propositions based on classical connectives and o.

Let L be the subset of classical propositions. Moore reads oP as "P is in the agent's
complete current belief set B". In his exposition he begins with L. regarded as a classical

propositional logic with every proposition of the form op as an additional propositional letter
along with the usual ones. Thus a classical deductive closed set of this classical L. is

merely one closed under classical tableaux deductions, or one closed under tautologies and
modus ponens. A classical Lb-assignment maps all propositional letters and all propositions

o0 into {T, F1, and each of these is extendible to a classical LO-valuation with domian L

and values in {T, F).

Definition. An autoepistemic theory is a set B of Lu--propositions for which there is a

classical L6-valuation v such that B consists of all P in L. such that v(oP) = T. Also

v is said to be an autoepistemic interpretation of B.

Since v can be LD-valued arbitrarily on any atomic proposition P and any modal oQ,

there is no necessary connection between the truth values of these propositions.

Exampl . For propositional letters A, B, we can define an L -valuation with oA true, oB

true, o(A A B) false. So A, B are in the corresponding autoepistemic theory, but A A B is
not. This is simply an instance of the fact that we can L6-value propositions of the form oP

arbitrarily and independently. So Moore allows in his definition of an autoepistemic theory B
that an agent may be incapable of any reasoning from beliefs to beliefs. This makes it
possible in this framework to study adding in reasoning abilities of limited strength by
suitable axioms restricting the allowed L -valuations. So the notion of autoepistemic theory

allows the study of agents with varied reasoning abilities by introducing additional modal
axioms reflecting these abilities.

DefinijiMg. A model of autoepistemic theory B is an autoepistenic interpretation of B such
that all propositions in B are true.

Dfniton. An autoepistemic theory B is semantically comWe if B contains every
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proposition true in all autoepistemic models of B.

Theorem (Moore [1985]). B is semantically complete iff
1) B is closed under classical Lo-consequence.

2) If P e B, then oP e B.
3) If -(P ( B), then oP 0 B.

These three properties were the definition of a stable set B of modal propositions given by
Stalnaker [1980, 1989].

Example. We informally used the stability of B and B' in the Tweety example.
- We applied 3) to verify that rule R could be applied to yield that "Tweety can fly" is in

B, with P the proposition "Tweety cannot fly".

- We applied 2) to verify that "I believe that Tweety cannot fly" is in B'. with P the

proposition "Tweety cannot fly".

Is stability a reasonable condition for the complete belief set B of a rational agent?

Requirement 1) is that the agent should be "logically omniscient", that is, any classical logical

consequence of the agent's belief set B should also be in B. This is a simplyfying
idealization, since to recognize that a given proposition is a classical logical consequence of
known axioms for a given B is at least an NP-complete problem (Halpern and Moses

[1985]). Verifying conditions 2) and 3) for specific propositions both involve this NP-hard

problem.

Reformulating, the condition that B is closed under Lo--consequence means exactly that a

tautology with beliefs substituted for variables is a belief, and that beliefs be closed under
modus ponens. For a modal point of view this commits us exactly to the closure conditions on
B imposed by deductive closure in the Hilbert style version of system K described in
section. Equivalently, this commits us exactly to system K, of modal atomic tableaux for o,

together with the deduction rule for tableaux.

Definition. An autoepistemic theory B is soung.d with respect to a set of premises A iff

every autoepistemic interpretation of B in which all the propositions of A are true is an
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autoepistenic model of B.

Definition. An autoepistemic theory B is grnded in a set of premises A iff B is

contained in

Cn[A U {op : p i B) U {-'oP -,(p f B)}],
where Cn is the classical L--consequence relation.

Theorem (Moore [1985]). An autoepistemic theory B is grounded in A iff sound with
respect to A.

Theorem (Moore [1985]). If A is a set of premises, then an autoepistemic theory T
extending A is sound and semantically complete with respect to A iff

T=Cn[A U {op: p T} U {-'oP: p 0 T}]

Definition. An autoepistemic theory B is a stable expansion of a set of premises A if B
contains A and is grounded in A.

Moore identifies the possible complete sets of beliefs that a rational agent might hold after

accepting A as the stable expansions of A. The problem in dealing with stable expansions is
that there can be none, one, two, or many, and the are not so easy to identify.

Example. {-'oP -. Q, -oQ-' P} has at least two stable expansions, one containing P but not

Q, one containing Q but not P.

Example. {-oP - P} has no stable expansions. Let B be a purported stable expansion. If
P is in B , then B is not grounded and therefore not a stable expansion. Any stable If P

is not in B, then -'3P is in B (B is stable), so P would be in B (B is grounded), a
contradiction.

9. Autoepistemic logic 2. 1 am indebted to W. Marek for the outline of this section. We will
repeat from scratch some of the same ground as in the previous section, but from a different
viewpoint. This viewpoint starts out with a "rational agent", it does not lend itself as

immediately to partially rational agents with limited reasoning powers as did the Moore

exposition of the previous section. We begin with "list semantics" for o. We work again in
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emphasizes the role of classical L-valuations v. These are valuations of the classical
propositions only, obtained from assignments to the classical propositional letters (not the oP
propositions). If S is a set of modal propositions (caied the "list"), a "list" consequence

relation "vS" is defined from S.

1. For propositional constants P, I'v,S P iff v(P) = T.

2. EvS -'p iff not 'v,S V.

3) tv,S ((o V t') iff Fv,S ; or tv,S '/,

4) 1-v,S OV iff V ( S.

Remark. We can interpret o4 as "the agent believes ;", we can interpret S as the list of

the agent's beliefs, we can interpret 4) as expressing that if the agent is asked if the agent

believes V, the agent consults the "list", and answers yes in case V is on the list.

Definition (S-entailment). Let I be a set of modal propositions. Then

I t-S V iff for all valuations v, -v,S I implies |'v,S '.

Definition. An expansion of I is a collection S of modal propositions such that the fixed

point condition S = { : I 1s A.

Let I be given, suppose that S is being guessed by the agent. What does it mean for the guess

to be correct?

1) Whatever is S-entailed should be in S (an adaquacy requirement).
2) Whatever is in S should be S-entailed (a completeness requirement).

Th rm (Moore). The following are equivalent.
a) S is an expansion of I.
b) S = Cn(I U {o: W ( S) U (-qa: $ S)).
(Here Cn is classical consequence).



A set S of modal propositions is called stable (Stalnaker, 1980) if

1) closed under classical deduction,
2) V c S implies aV ( S,
3) V f S implies -,o c S.

Condition 3) makes the reasoning non-monotonic. Stable theories are supposed to represent
the set of all beliefs of a completely rational introspective agent.

The objective part of a set of modal propositions is its subset of classical propositions without
0.

Theorem. (Moore [1984)).
(i) If S is an expansion of 1, then S is stable.
(ii) If S is stable, then S is an expansion (and in fact the unique expansion) of its objective

part.

Theorem (Marek [1986], Konolige). Every collection of L-propositions closed under classical

L-consequence is the objective part of a stable L--theory.

So stable L.-theories are in a 1-1 correspondence with classical objective L-theories.

We now discuss how to generate expansions.

Let L,, be the propositions of L. with a's nested to at most depth a.

Oneration E. Given a set A of L-propositions,

let E(0, A) be the set of classical L-consequences of A,
let E(n+l, A) be the st of classical L-consequences in L,,+, of

E(n, T) U {oj : p ( E(u, T)} U{{-o : v ( LOan - E(n, T)}.

Let E(T) be the union of all E(n, T).

Theorem (Marek [19861). If A is a set of propositions in L, then E({A)) is the unique
expansion of A.



26

Thus to find the expansion one has to find the objective part.

ELzwie. Let I consist of -,uP -, P alone. This I has no expansion. The only candidates
are: 1) E(f) and 2) E({P}).

Re 1: P is not in E(f), so -oP e E(O), and if it is an expansion, then P e E(O) by modus
ponens.
Re 2: One can check that P is not an L. classical consequence of

I U {ov2: V ( E(P)} U {mp: not ((p c E(P)}.

Example. Let I consist of -oP -. Q and -,oQ - P. This I has two expansions, E(P) and
E({Q}). (There are two more candidates E(O) and E({P, Q)), but they are discarded by
the same reasoning as above.) Why is E({P}) an expansion? Since Q is not in E({P}), we
get that -oQ isin {-' :w0E({P}). Fromthis

E({P}) =Cn[I U(op: oE({P})} U{-f'oq: tE({P})}]

can be proved. The non-trivial inclusion is from left to right, proved by induction using E(n,

{PH).

.xamole. Let I consist of P and oP -. Q. This has the unique expansion E(P A Q).

Theore (Moore [1984]). If S, and S2 are two different stable theories, one cannot be

contained in the other.

Thus stable theories act a little like classical complete theories.

Clearly if Cn(1) = Cn(J), then I, J have exactly the same expansions.

Autoepistemic normal form. An autoepistenic (ae) clause is a modal statement of the form

A -' a, where

o is in L, and
A is of the form GV1 A...A air A...A -,Dbl A...A -COS
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where pjl,...w r, il,... 08 are in Lo .

We can take the theories we axe concerned with to be generated by ae clauses. Here,

imitating logic programming, we call "a" the hod and "A" the hP& of the ae clause.

Theorem (Marek and Truszczynski [1988, 19891).

1) For every I C L. there exists an I' C L with the same expansions such that the

ae--clauses A - a of I' all have A of o-nesting depth 1.

2) Such a I' can be computed in polynomial time.

This tells us that the problem of Byzantine generals does not exist in autoepistemic logic.

Normal form for expansions.

Theorem (Marek and Truszczynski [1988, 19891).

Let I={ 10 i =A i - a i: 1 <i<kl. Then

1) Every expansion of I is of form

E({Oi:i c J)) for suitably chosen J c {1 .... k}

2) A theory S C L has the property that E(S) is an expansion of I if and only if there

exists a representation of S in the form S = Cn({Oi: i (J}) such that

(i) I c E(S)

(ii) For all i c J, we have that Ai c E(S).

The problem is that a theory S may have numerous representations as Cn({Oi: i ( J}) for

various J. It is enough that one f these representations has the property 2(ii)..

Example. I= (-oP- (P AQ), -'aR-P, -R- Q}. Then E({PAQ)) is an expansion of

I for the following reason. The second and third clause give "epistemic support". If we select

our representation of E({P A Q)) (=E({P, Q)) from first clause, then we would not have the

necessary epistemic support. Fortunately only one representation is required so it is an

expansion.

Theorem (Marek [1986], Moore [1988]). There is an algorithm which, given T _ L and

9 LV, tests whether or not V e E(T).
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This algorithm cannot be polynomial time, but it is polynomial time in the characteristic

function of Cn(T). The last two theorems imply that we can effectively compute all
expansions in the propositional logic case.

Definition. V is ae-consequence of I iff 'p belongs to all expansions of I.

The previous two theorems imply that this notion is decidable.

Exame. I = {-.oP -. Q, -oQ -* P). Proposition P V Q is an ae consequence of I.

Proposition oP V oQ is ae-consequence of I. Formula (oP A -'OQ) V (-oQ A oP) is

ae-consequence of I. Neither oP nor oQ are ae-consequence of I.

Exampe. (a) I = {-oP - P1. I is consistent but it is ae-inconsistent (since there is no

expression, intersection of expansions is L.).

(b) I = {-,oP -, P, oP -* P) has a unioue expansion E(P), thus it is ae-consistent. Its

subtheory {-'oP -. P } has no extensions. Thus there are ae-consistent theories with

inconsistent subtheories. The subtheory {oP - P) has two expansions: E(TAUT), E(P).

Thus we have a situation in which the smaller theory has a smaller set of consequences

(previously had bigger...). The fact that I can have many or no expansions is disturbing. Are

there conditions that imply uniqueness of expansions?

Gelfand stratification. A G-clause is a propositon of the form
(P I A^'.. P K A °Q1 ... A °Qr A -uoSI ̂ ... -oSm ) - (Tl v ... V Tu),

where all Pi's, Qi's, Sk's, and Tt's are atoms. A theory I consisting of G--clauses is

G-stratified if there exists a representation.

as a disjoint union I = 10 U ... U In such that

a) 10 consists of the classical propositions in 1.

b) Whenever clause
P1 A. Pk A oQ A...A oQ1 A -6Si A...A -,Sm - T, v...v T u

belongs to I, then

(i) Q1 ... Q1 S1 "...I Sn do not appear on the right hand side of implication in any Im ,

m j (that is, they are "defined" in 1o...lj._).
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(ii) P1**Pk do not appear on the right hand side of implications in any Im' m > j.

Ih~rem (Gelfond [19871). If a theory I consisting of G-clauses is G-stratified, then it

possesses a unique expansion.

Stratification. There is another notion of stratification. Theory I consisting of ae-clauses is

stratified if there is a representation
I =I0U ... UIk

such that for all A - a (I .,

(i) If an atom appears in a then it does not appear in any formula in any Ik, k < j.

(ii) If an atom appears in A then it does not appear in the "head" of any formula in Ik ,

k>j

Theorem (Marek and Truszczynski [19881). If I is stratified and I = 10 U ... U In , then

(a) I has at most one expansion
(b) If S = E(T) is an expansion of I and T is closed under Cn, and if T. is an

intersection of T with the language whose atoms are those appearing in Ii , then

(i) E(Ti) is an expansion of Ii

(ii) S is an expansion of Ti U Ii+ 1 U ... U in.

This theorem tells us how to compute expansions recursively: Compute an expansion of I0.

S0. Then compute an expansion of So U I1 , say S1. Then compute an expansion of of

S1 U 12, say S2. At each step we are guaranteed at most one expansion. If we do not get one

at any stage, there is no expansion for I.

Fixed Points. Let . be a modal logic such as K, S4 , S5, etc. S is called an 3-fixed point

over I iff S = Cn,(l U {- o: V f SI). This definition is due to McDermott.

Thggrm (Svarts [19891). Expansions of I are precisely the K45 fixed points over I.
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ExMl. I = {oP -, Q, OQ -, PI has two expansions, E1 = E( ) and E2 = E(P, Q).

But P is in the second expansion because aQ is there, that is, because Q is there, that is

because oP is there, that is because p is there. Hence the evidence for p being in E2 is

that "p is there", and there is definitely a circularity.

Let us eliminate this circularity. Define an operator A as follows. For S g La

put A(S) = Cn(S U {a: vS}). and define

Ao(S) = S

An+I(S) = A(An(S))

A.(S) = U1 An(S)

Call T an iterative expansion over I if T = A(I U {-U .o: OT})

Theorem (Marek and Truszczynski [19881). If T is iterative expansion over I then T is

an expansion of I.

Iterative expansions are fixed points with respect to the simplest modal logic in which there is

classical tautologies, modus ponens, and necessitation, but no specific modal axiom such as

K, T, 4 or 5.

Connection with Logic Programming. Given a logic program P, let TI = ground(P) be the

set of all ground instances of P. Then II consists of expressions of the form

C: P-QI ..... Qr-Sl ....-S

To such clause assign its Gelfond translation

G(C) = Q A...A Qr A -OSlA ... A -aSt - P

G()= {G(C):C II}

If P is stratified in the sense of Apt-Blair-Walker then G(1) is G-stratified.

Theorem.
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(a) (Gelfond [1987]). Let P be stratified. Let Mp be its "perfect" model in sense of

Apt-Blair-Walker. Then E(Cn(Mp)) is the only expansion of G(17).

(b) (Marek and Truszczynski [1988]) E(Cn(M p)) is an iterative expansion of G(1).

10. Autoepistenic logic and Euclidean transitive frames. The semantics of §8, §9 using L.

and L valuations respectively is the classical logic way of doing things. It is natural that
there is an equivalent in frame semantics.

Theorem (Moore [1984]). T is a stable autoepisternic theory if and only if T is the set of all
valid modal proposit 'ns of a complete frame.

This was also proven by Halpern and Moses and Levesque.

Since the complete graphs (in which directed branches extend from every node to every node)
are determined up to isomorphism by the cardinality of the nodes alone, one can restrict the
complete frames for this theorem to those of the form K = (5, R), where the set of worlds Y
is a set of classical valuations (of the propositional letters) and R is 3x 9. Introduce for
each classical valuation V a copy (V, 0), to be used as a new world distinguished from world
V if the latter is present in 9r Call it the distinguished V. Each pair consisting of K and
a distinguished V gives rise to an ordinary Euclidean frame KV = (Y, R'), where

Y = U {(V, 0)} and R' = R U({(V,O)) x 9). That, is, every W in K is accessible from
(V,0) (including V if the latter is in ), but (V, 0) is not accessible from any world in K.
There is a natural extension of KV to a model, where each world V in K is assigned

valuation V, and (V, 0) is assigned valuation V.
Now let B be an autoepistenic theory. Such a model KV with the assignment above,

arising from a complete model, is called a-

- "possible worlds" interpretation of B iff B consists of all the propositions valid in this
model.

- "possible worlds" model of B iff every proposition of B is true in K .
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Theoem (Moore [1988]). The "possible worlds" models KV of B are precisely those

"possible worlds" interpretations in which V is a member of .

This affords a back and forth translation of autoepistemic interpretations and autoepistemic
models of stable theories to "possible worlds" interpretations and "possible worlds" models as
defined above. Moore [1984, 1988] uses these semantic "possible world" characterizations to
investigate stable expansions, and decision methods for semantic entailment. His method
amounts to the use of the "list semantics" of the last section. There is a nice tableaux-based

approach which can be redone in the style of the present lectures due to Niemeli [1986. We

omit these applications, which will be in an expanded version of these lectures, for lack of
space.

§11. Modal predicate logic with constant domains. We introduce very briefly a modal
predicate logic within classical logic intended to describe a single "constant" domain, with

different true atomic statements at different worlds. This logic can be extended to have
several modalities oi, we do not do this here. Dynamic logic uses this model, there the

constant domain is the set of all states of a machine, the o are induced by programs or

commands. This formulation covers theories of beliefs or knowledge for several agents at once
about a fixed domain of individuals as well, one oi for each agent. The earliest example of

such a theory is Hintikka [1962], see also Konolige [1986 or Halpern and Moses 11985] for
further references. Here is the list of primitive symbols.

Predicate letters of degree n,

An infinite list of variables

an infinite list of (individual) constants

Logical connectives A, V, -', -, , 3, V
parentheses (,) and a comma.

The inductive definition of formula and free occcurence of variables is:

1) If R is a predicate letter of degree n and a1, .,.On are variables or constants, then

R(al, ..., on) is a formula. (These are called the atomic formulas.) In atomic formulas all

occurrences of all variables are free.
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2) If &, 1 are formulas, then (a A .6), (a V #), (a-,/1), (,a) are formulas. Occurrences of
variables in these formulas are free or bound as they were in a, P3.

3) If a is a formula, x is a variable, then ((3x)a), ((Yx)a) are formulas. Occurrences of
variables other than x are free or bound in these formulas as they were in a. variable x is
bound in all its occurences in these formulas.

3) If a is a formula, then (cia) and (oa) are formulas. Variables are free or bound in these
statements as they are in a.

A statement is a formula in which all occurrences of all variables are bound.
This determines a language Lo0 o. It has a purely classical sublanguage L obtained by

omitting all reference to clause 3).
We need the notion of substitution. If we write a formula P as ((x) for x a variable, and
c is a constant, then ip(c) is the result of substituting c for all free occurrences of x

throughout V.

For the sake of defining the usual notion of "relational system" in a form exactly appropriate

for tableaux, assume that L has no constants itself. Let C be a set of individual constants
and extend L to a language L(C) by adding in C to L. An assignment A for L(C) is a
map of the atomic statements of L(C) to {T, F). Each assignment A is extended

uniquely to a valuation V mapping the statements of L(C) to {T, F), by the inductive

definition below.

0) V(P) = A(P) for all atomic statements P.

1) V(A A B) =T iff V(A) = T and V(B) T.
2) V(A V B) =T iff V(A) -T or V(B) =T.
3) V(A- B) T iff V(A) # T) or V(B) =T.
4) V(-A)=T iff V(A)#T. -

5) V((3x)l(x)) = T iff for some constant c of C, V(;p(c)) = T.

6) V((Vx)gp(x)) = T iff for all constants c of C, V(jp(c)) -=T.

In the notation common in predicate logic, an assigment defines a relational system for L
with domain C. This relational system has each relation symbol R of degree n of L(C)0, o

denote
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[(c, ... , ) A-c : V(R(c1, ..., cn)) = T1.

The definition of model (., R) for modal predicate logic with constant domains goes as

follows. Frames are the same as in propositional calculus, a pair (, R) consisting of a

non-empty set Y of "possible worlds" and an "accessibility relation" R _ " . A model is

given by a set C of individual constants (the "constant domain") and a map v (the

valuation function) assigning to each w c Y a valuation v(w) of L(C). The definition of
"wI-p" for statements p of L(C), 0 is as follows.

0) w I- P for atomic statements P iff v(w)(P) = T

1) wI-AAB iff wi-A and wi-B.

2) w 1AVB iff w 'A or w -B.
3) w -A- B iff wI-A implies wI-B

4) wl--A iff not w -A

5) wI-oA iffforall w' in 3r such that wRw', w'l-A.
6) w'-*A iffforsome w' in Ysuchthat wRw', w, w -A.

7) wV- ((3x)V(x)) iff w I-F (c) for some c in C.

8) w P-((Vx)p(x)) iff w -o(c) for all c in C.

The reason these are called "constant domain" models is that the domain C of the relational

system assigned to each world is precisely the same. In constant domain models we do not

have to worry about any change in denotation of a constant from world to world. The

constants are the same in every world and can be thought of as having the same denotation.

and even may be thought of as denoting themselves. The big diffrcence between worlds is

that the atomic statements R(c ,1 ..., C.) forced in one world may not be forced in another

world.

The definition of "valid in a frame" and "valid in a model" and "valid" are as for

propositional logic. Using the tableaux before, correctness and completeness are routine.

Constant domain tableaux. We need a countable list of world constants just as in modal

propositional logic.. We also need a countable list of new individual constants, to be used in

the tableaux to name elements of an intended constant domain. These individual constants

are used, as in tableaux for classical predicate logic (Smullyan 11968]) as witnesses for

existential quantifiers. Here is the motivation, similar to that for classical logic, but for
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frames. Each branch b of a tableaux is viewed an attempt to build a model in which each

forcing statement on the branch holds as stated. So the frame would consist of the set Y of
world constants w mentioned on b; the constant domain C would be the set of all

constants occurring on b; the model based on this frame has the valuation at world w with
atomic statement R(cl, ..., C.) true iff Tw-R(c1 , ... , cn) occurs on b. When a branch b is

contradictory in such a tableaux development, this attempt to build a model has failed.
When all such attempts to build a model have failed on all branches, we have a tableaux
proof.

We add the usual atomic tableaux rules for predicate logic quantifiers (Smullyan 11968]) to
those of modal propositional logic. The rules for T(Vx) (x), F(3x)p(x) are set up to handle
the constant domain situation only, since we are allowed to instantiate using any constant
already on the branch. We have assumed that L, has no constants itself.

Quantifier atomic tableaux for constant domains.

Universal

TwV-(Vxip x)  Fwi (Vx)(p(x)

Twl-p(c) FwI-p(c)

For any c For a new c not occurring on

any entry above on the branch

Existential

TwF (3x)(px) ,Fwl (3x),px)

TwI-tpc) - Fwlt-,(c)

For a new c not occurring on For any c
any entry above on the branch

E&Mnilai
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1 FwIF(Vx )oA(x) -. o(Vx)A(x)

2 TwI- (Vx) a (x) by 1

3 Fw-o (Vx) (x) by 1

4 TwRv by 3

5 FvI (Vx A(x) by3

6 Fv4A c) newc by5

7 TwI-a (c) by2

8 TvFA( I c) by 7
x

So (Vx)oA(x) - a(Vx)A(x) is provable.

Exam~l. (Vx)- -- o(3x)g.

1 Fwl-(Vx)-op - 13(3x)P

2 TwI-(Vx) 'oV by 1

3 Fwt--,o(3x) v by 1

4 Tw-o(3hx by 3

5 Tw--cp (c) by2

6 Fwl-o ( c) by 5

7 TwItv by 6

8 FvI- c) by 6

9 TvFI 3x)v by 4

10 Tv-V(d) new d by 9

This is not a proof. With domain C = {c, d), and two worlds w, v, with v accessible from w

and no atomic proposition holding in w and s(d) holding in v, we get a counterexample.

p(d)
w --- # v
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Just as in classical predicate tableaux, the constructions are as helpful for finding
ounterexamples as for finding proofs. We remark that the same tableaux method applies in
case more general situations than constant domains are allowed But the semantics intended

for individual constants then has to be very precisely specified before it becomes obvious what
the appropriate tableaux rules for quantifiers are.

§12. Classical Dynamic Logic. Hoare 119691 designed a logic for expressing program
specifications and for proving "partial correctness" of programs. A basic construct of his logic
was A{P)B, meaning that if A holds before the execution of program P, then B holds
afterwards (Gries (1981]). Pratt (1976] was motivated by this to develop a modal logic of
programs in which each command c in a computer language implemented on the machine is
associated with two distinct modal connectives oc and * C See Pratt [1976, 1980), Harel
[1984], and Kozen and Parikh [1982]. Dynamic logic will be well covered in a forthcoming

article by Kozen and Tiuryn (1989] in the new Handbook of Theoretical Computer Science, to
appear. We take the material in the next two paragraphs from that paper of Kozen and
Tiuryn , to which the reader is referred.

Here is a brief explanation. A simple model of sequential computing is that the current state

of a sequential machine is determined by an assignment of values in storage locations to
variables. Call such an assignment a store. Let Y be the set of all possible stores. Let c be
a single command in the language. Corresponding to c introduce a relation R C Y'x Y by

the definition that wRew' iff

when the store is w and command c is executed,

at the end of execution, the store is w'.

(Of course, c could be a program taking many machine cycles to execute.) Let Y be the set
of all stores, let ff be the set of all commands c of the computer language. Define a
"multiple modal" propositional logic frame (, {Rclcet) with an accessibility relation

Rc 3.x Y for each command c in V. Introduce a modal logic having a modal connective

ac and *, for each c e V.

Propositional dynamic logic has propositions of the form ac , 0c V for program or command
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C.
- ocw is interpreted as meaning that if any execution of c terminates in a state s, then p

holds at s.
--¢c is interpreted as meaning that there us an execution terminating in a state s with (

holding at s.

The connectives mentioned are not the only ones used in propositional dynamic logic. There
are additional operations for constructing new commands or programs from old, stemming
from the theory of regular events.

Classical proositional dynamic logic.

Syntax
Atomic program letters - (lower case Greek)
Propositional letters - (Upper case Roman)
1) Atomic program letters are programs.

2) If a, /1, are programs then so are o:,0, a* , auo, 4?, where ; is a proposition.
3) If a, /1 are programs and A, B are propositions, then

A A B, A v B, -A , o0 A, oaA are propositions.

Semantics
A modal frame (Kripke model) consists of a set S of "states" or "possible worlds, together

with a set of accessibility relations {R.}, one for each atomic program a.

Extend R to all programs by

, -- {(s, t) : (3u)((s, u) c RO A (u, t) ( Rol,

RaU0 = Ra UR #

Ra = Un w Ran

110 = {(u, u) :u satisfies V).

Satisfaction is defined as for ordinary modal logic, except that different accessibilities are used
for different programs.
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Axiomatization

1) Axioms for propositional logic

2) oaa ^ o ar -> *a( V A r),

3) oo(V r) -> oV ) V o r.

4) g<-> *a, V
5) o-, e <-> %(oO),

6) o ? -<-> p A-,

7) (V v *a(o,.V)) -> *,0,

8) 0 a -> (pvoe(-V A , )).

Rules of Inference.

Modus ponens.

From A, A -> B, infer B.

Modal generalisation.

From A, infer o A for all programs a.

Classical predicate dynamic logic. Here is a little about classical predicate dynamic logic. In

classical first order logic, the truth or falsity of a formula in a relational system is determined

as soon as values in the domain of the relational system are assigned to all free variables. In

programming environments the values assigned to programming variables vary from stage to

stage during the execution of a program. We need a predicate language which can handle

changing assignments of values to programming variables for a sufficiently wide class of

programs. Within classical logic, the propositional dynamic logic of Pratt, Harel, and Kozen

was generalized by them as follows to a predicate modal logic. Let the set S of states be the

set of all assignments P which map the set {xi}i, of program variables into the domain of

a relational system M. Each such F assigns values to terms of the language. A program

can be viewed as inducing a transformation on states. Given an initial state, the program
will go through a series of intermediate states, perhaps eventually halting in a final (output)

state. In dynamic logic a program is a well-formed expression built inductively from

primitive programs using a small set of program constructors which are usually taken to be

sequential composition ) , * (iteration) and U (non deterministic choice) . Dynamic logic

interprets these programs semantically as input/output relations on a suitably chosen set of

mI II nlmm lml~llllmmlm l~ll l|
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states which makes it a good formalism to describe those properties that manifests in the

input/output relations of a program thereby making Dynamic logic undesirable to formalise
properties of programs that are not supposed to halt. One is given an input-output

specification, a formal relation between the input and output states that the program is

supposed to maintain. The input/output relation of a program carries all the information

necessary to determine whether the program is correct relative to such a specification. In

dynamic logic, programs are first-class objects on a par with formulas, complete with a
collection of operators for forming compound programs inductively from a basis of primitive

programs. In the case of first order dynamic logic, the atomic programs are taken to be

assignment statements

xi <- t,

where x i is a variable and t is a term. The states are taken as set S of total assignments of

values in the relational system to the program variables. Rxi<_ t denotes

{(F, G): F, G c S A G = F(F(t)/xi))

The rest is taken from propositional dynamic logic.

§13. Intuitionistic dynamic predicate logic (Wijesekera). Note that in classical dynamic

logic, propositional or predicate, the "states" are assumed as completely known in order to

carry out these valuations. In most actual situations, we have only parti I knowledge of the

complete state of the machine, say the readings from a few pertinent registers and stacks.
What kind of logic can make effective use of "partial knowledge" of states? Wijesekera

proposes an intuitionistic system of dynamic logic, and the use of Kripke models, based on
partial knowledge of assignments. See Nerode [19901 for explanations as to why Kripke

models of intuitionistic reasoning reflect increasing partial knowledge of states. We also wish

to be as constructive as possible for another reason. We believe that much more constructive
systems have to be developed with term extraction for many of these logics to make them

tools for automated reasoning. A beginning has been made by Duminda Wijesekera [1989] in

modal intuitionistic logic with two different kinds of accessibilities, one the modal

accesssibilities for the problem at hand, one for intuitionistic increase of knowledge. These
logics have correctness and completeness theorems. They have been applied to model

concurrency by using a constructivised version of Peleg's model of concurrency Peleg [1987]).

They have also been applied to give a good intuitionistic dynamic logic with decent term
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extraction properties. Such features are characteristic of intuitionistic natural deduction

systems and not characteristic of their classical counterparts, modal or otherwise. This may
prove to be important for implementation as tools in systems such as Constable's NuPRL.

Let K be a Kripke frame for first order intuitionistic logic. Let S be the set of partial maps

of assignments into worlds.

Definition. (F, G) ( R X <-t iff

F, G t S are mapped into the same world in the Kripke model, and

F, G are defined at x,

and G = F(F(t) / x).

Definition. F < G iff

1) the world that F is mapped into is below the world that G is mapped into in the

intuitionistic partial order, and

2) If F(x) is defined, then so is G(x), and they take the same value.

The following conditions are consequences of the definitions above.

1) If F < G and (F, F') ( R, then there is a G' satisfying F' < G', and (G, G') cR.

2) If (F ,F') R and F' < G', then there is a G such that F<G and (G ,G') R .

The meaning of the ordinary logical connectives is the same as in intuitionistic logic.

Definition. We say that w I- oa ( if

there is a w' such that
(w, w') ( R O and w'I .

finition. We say that w F aoV if

whenever w < w' and (w, w") t R

we can conclude that w"F io.

The notion of satisfaction used here is the one usually called local satisfaction in a frame.
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That is, r h semantically means that for all w in the frame, w h r implies that w .

We can prove correctness and completeness relative to this semantics for the following
axiomatic systems.

(1) Axioms of Heyting predicate logic.
(2) Scott's axioms of the logic of existence, equality and strictness axioms.
(3) The propositional dynamic logic axioms.

We change the notation for modalities corresponding to programs to the standard notation of
dynamic logic for the operators. It is otherwise hard to read the axioms.

Write <a> for and write [a) for n -

<a U #>V --- <a >V <#>(P,

<&>(V v 8) - <O> v <0>0

< a >V; V--- V <a><Ck >V,

(a.> A [][a

(<a>T -- [a]v) -
< 0>1 - L,

(<O>V.-- 108 v [102) -V [o]( 02- v ).

Here is what is needed for the deduction theorem.

[1610-- 8) - (["l - to)0).
[a](V 0) A <a >(p-- < a >
[a] A < a>V--- 0) - < > V,

<xi - a> V(xi) 1tt21ti = xi A t2 = a A t2)],

1xi -- a1V(xi) -- ' Ytlt 2 [t = X A - W(t2)].
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Rules
Rules of quantification of E+ logic.
(This is Scott's logic of partial existence (Troelstra and van Dalen (1988])
Modus Ponens
Substitution

Io(x) Et

,P ( t/x)
Modal Rules

r', A I- B

[a~ir, <a>A I- <a>B

1F A

[air k[a]A

Propositional dynamic logic rules.

V'-</3><ad>lo-O for all i

r - </3; <a*> W- 9

Intuitionistic concurrent dynamic Loic (Wijesekera). This is a refinement of Peleg's model
of concurrency. Here we add an extra program construct nl. This a nl # is supposed to mairror
the fact that a and 03 are executed simultaneously, starting from a common state w. So
each program a now denotes an R.S x P(S), where P(S) is the power set of the set of

states.
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Definition. We say that w I- <a> v if 3T C S such that

(w, T) e R , Wand

w' - for each w' e T.

Definition. We say that w 1 [a]W if for all w' _ w and all T' C S such that (w', T') c R

and all w' E T', we have w" l* p.

We have to redefine composition and * all over again (see Peleg [19871).

Definition. R o is the set of all pairs (w, T) such that

3T' C S with (w, T') e Ral and

for all u in T', there is a Tu such that

(u, Tu)c R 0and T= UE TT.

Definition. R, * is U nR an.

There is a axiomatization for the concurrent case similar to those we have supplied for the
sequential dynamic logic.

§14. Closing note Other logics have been designed for non terminating and perpetual
processes such as operating systems, and for concurrent programs. In temporal logic, the
program is fixed and considered part of the structure over which the logic is interpreted. Such
a logic is sometimes called an endogenous logic The current location in the program during
execution is stored in a special variable for that purpose, called the program counter, and is
part of the state along with the values of the program variables. Instead of program
operators, there are temporal operators that describe how the program variables, including the
program counter, change with time. Temporal logic lacks the ability of dynamic logic to
combine programsand deal with several programs in. the same model, but because it deals
with execution sequences, temporal logic (and another subject, process logic), can deal with
correctness of perpetual programs and programs that sometimes halt, such as operating

systems and communication networks. Pnuili [1977] suggested that temporal logics could be
used to reason about concurrent programs, when the issue of termination ought to be
suppressed from the discussion. Temporal logic began as a formal axiomatic subject (tense
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logic) in Prior [1955]. Temporal logic also has a natural "possible worlds" Kripke model

theory. Syntax and semantics of various temporal logics from a philosophical point of view

and without computer science may be found in the excellent texts of Rescher and Urquhart

(1971], McArthur (1976], van Benthem [1983]. The 1960's introduced the problem of program

specification (what a program is supposed to do), program development (find a program
which is supposed to satisfy the specification), and program verification (verify that the

program satisfies its specification). Floyd [19671 developed the "inductive assertion method"
for verifying that a flowchart program (built up from conditional branching, join of control,
and assignment) for computing such a function satisfies "partial correctness" (if the program
terminates on an input, the resulting output satisfies the specification). Hoare [1969] turned
this into a calculus, much investigated since, based on the construct {P}S{Q} representing

"if the assertion P is true when the program S is initiated, then assertion Q is true if and
when the program S terminates." Burstall [1974] developed a method for showing "total

correctness" (partial correctness plus the program always terminates). He follows the
execution of the program using symbolic (variable) data, using mathematical induction to
prove general assertions about what happens at loops. Burstall himself makes the point that
modalities are involved. In Burstall's proofs of total correctness, assertions to be proved have

the form
"(3time t)(at time t, program line I is executed and P(t))".

In Floyd's proofs of partial correctness, assertions to be proved have the form

"(V times t)( at time t, program line I is executed implies P(t))".
Pnueli [1977] systematized the modal logic suggested by Burstall as a classical logic

augmented by a , o corresponding to Burstall's suggestion.
oP(t) is read "always" means "now and in the future",

oP(t) is read "eventually" and means "now or sometime in the future".

He assumed that time is the non-negative integers with the usual order and introduced a
third operator o.

oP(t) is read "next P" and means "P(t+l)".

These modal logics clarified program correctness proofs, and are equally suitable for
concurrent or perpetual programs such as operating systems. An important topic is fairness.
This takes many forms. A weak one is that a continuously active process will eventually be
scheduled. A stronger requirement is that a process active infinitely often will be scheduled.
Another is that a process which is active at least once will be scheduled. All these can be
formulated in the Pnueli calculus mentioned, and treated as program specifications. But
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stronger notions, such as that of two processes, the one that is active first will be scheduled
sooner, exceed the capacity of this calculus. Gabbay et al. introduced a binary connective U,
vUw, read " u until w", such that

(uUw)(t) is true if v(w) is true at all times w
until a future time s when w(s) is true.

Computer science applications of temporal logic are a thriving specialty in their own right.
There are many contributions to the specification and verification of sequential and

concurrent systems.

Multiple believers. Now think of "agent 1 believes", "agent 2 believes", etc. We may want
all these operators present at once in the same logic. After all, what one agent believes or
knows does not necesssarily coincide with what another believes or knows, or with the
common beliefs or knowledge of several agents. One objective of such studies is to analyze,
model, and machine simulate rational behavior based on knowledge and belief. These
applications generally start by putting down reasonable axioms for belief or knowledge, and
continue by trying to develop methods of determining whether a given proposition is believed
or known on the basis of other propositions. The agents themselves may be machines, and we
may be trying to reconcile their databases (beliefs, knowledge).

Hintikka [1962, 19711 gave a Kripke model of beliefs of multiple agents. In its simplest form,
there is one set of possible worlds, but a different accessibility relation for each agent, and an
agent believes P if P is true at the worlds accessible to the agent. See Halpern and Moses
[1985] for a survey of logics of knowledge and belief. Also see Konolige [1986, 1988].

* Supported by NSF grant MCS-83-01850 and ARO contract DAAG29-85-C-0018

** thanks to Prof. Wiktor Marek for §9 and to MSI fellow Duminda Wijesekera for §13,
and to Prof. Andre Deutz for his help in the preparation of this paper.
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